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A DIRECT METHOD FOR SOLVING STOCHASTIC CONTROL

PROBLEMS∗

TYRONE E. DUNCAN† AND BOZENNA PASIK-DUNCAN†

Abstract. In this paper a method motivated by completion of squares is used to describe

explicit optimal controls for some stochastic control problems that include the linear-quadratic control

problem for systems with a general noise process, the linear exponential quadratic Gaussian control

problem for systems with Brownian motion, and the control of Brownian motion in the two sphere

and the real hyperbolic plane with both finite and infinite time horizons.

1. Introduction. While the study of stochastic control problems can be traced

from the evolution of the calculus of variations and deterministic control and from

various stochastic control problems in statistics, the first major problem solution for

the formally defined area of optimal stochastic control was the linear-quadratic Gaus-

sian (LQG) problem (e.g. [2], [3]) that is also called the stochastic regulator problem

(e.g. [13]). The area of stochastic control has developed significantly in breadth and

depth from the solution of the LQG problem approximately fifty years ago. Two

general methods have developed for solving stochastic control problems. They are

the Hamilton-Jacobi-Belllman (HJB) equation and the stochastic maximum (or min-

imum) principle. The HJB equation can be considered as a natural generalization

of the Hamilton-Jacobi equation of classical mechanics and the stochastic maximum

principle can be considered as a natural generalization of the maximum principle of

deterministic control (e.g. [18]).

For a stochastic control problem the Hamilton-Jacobi-Bellman equation is (typ-

ically) a nonlinear second order partial differential equation. The control system is

assumed to generate a continuous time Markov process for any control from the family

of admissible controls. Clearly the questions of existence and uniqueness of solutions

for HJB equations are difficult in general. Therefore the notion of solutions is of-

ten relaxed to viscosity solutions [14]. However an optimal control that arises from

the solution of an HJB equation may not be in the family of admissible controls.

Thus significant difficulties often arise with this method though it provides sufficient

conditions for optimality.

The stochastic maximum principle method is another important approach which

yields necessary conditions for optimality. With some suitable convexity conditions
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the necessary conditions of the stochastic maximum principle can be shown to be

sufficient. In this approach a solution of a backward stochastic differential equation

(BSDE) is required for the solution of the optimal control problem. A BSDE is solved

backward in time but the solution is required to have a measurability that is forward

in time. The questions of the existence and the uniqueness of solutions of BSDEs for

stochastic control problems are generally difficult to resolve.

Both of these methods for the solutions of optimal stochastic control problems

have formidable aspects. Another method that has been effectively used for linear-

quadratic deterministic control and LQG control arises from the completion of squares

method in elementary algebra. This approach provides an optimal control directly.

It is generalized here to other control problems. Some examples are provided to

demonstrate the usefulness of this approach for problems of both linear and nonlinear

stochastic systems, systems perturbed by general noise processes and infinite time

horizon problems. While some results are only described, the proofs of some other

results are either given or sketched.

Some advantages of this third direct method are that it is (mathematically) el-

ementary, a general family of admissible controls can be considered, insight into the

structure of the form of the explicit optimal controls can be obtained, and general

noise processes other than Brownian motions can often be considered.

A brief outline of the paper is given now. In Section 2 control problems with

a controlled linear system and either a general noise process and a quadratic cost

functional or a Brownian motion with the exponential of a quadratic functional are

explicitly solved. In Section 3 control problems for a Brownian motion in either a two

sphere or a real hyperbolic plane are explicitly solved with both finite and infinite

time horizons.

It is a pleasure for the authors to dedicate this paper to Han-Fu Chen on the

occasion of his seventy-fifth birthday.

2. Control of Stochastic Linear Systems. Initially consider a linear-quadra-

tic control problem described by the controlled linear system given by

dX(t) = AX(t)dt+BU(t)dt+ CdW (t)(1)

X(0) = X0(2)

where X0 ∈ R
n is a constant vector, X(t) ∈ R

n, A ∈ L(Rn,Rn), B ∈ L(Rm,Rn), C ∈

L(Rp,Rn), U(t) ∈ R
m, U ∈ U , (W (t), t ∈ [0, T ]) is an R

p-valued square integrable

process with continuous sample paths and this process is defined on the complete

probability space (Ω,F ,P) and T > 0 is fixed. Let (F(t), t ∈ [0, T ]) be the filtration

of (W (t), t ∈ [0, T ]). The family of adapted, admissible controls, Ua, is
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Ua = {U : U is an R
m-valued process that is progressively measurable with respect

to (F(t), t ∈ [0, T ]) such that U ∈ L2([0, T ]) a.s.}

The quadratic cost functional, J , for the control problem is given by

J0(U) =
1

2

∫ T

0

(< QX(s), X(s) > + < RU(s), U(s) >)ds

+
1

2
< MX(T ), X(T ) >(3)

J(U) = EJ0(U)(4)

where Q ∈ L(Rn,Rn), R ∈ L(Rm,Rm),M ∈ L(Rn,Rn), Q > 0, R > 0 and M ≥ 0

are symmetric linear transformations.

This linear-quadratic control problem can be explicitly solved as described in the

following theorem. The result is a natural generalization of the result for Brownian

motion by including in the optimal control a prediction of the response of the dual

optimal system to the future behavior of the process W .

Theorem 2.1. For the optimal control problem (1) and (3) and the family of

admissible, adapted controls, Ua, there is an optimal control U∗ that can be expressed

as

U∗(t) = −R−1BT (P (t)X(t) + V (t))(5)

where (P (t), t ∈ [0, T ]) is the unique symmetric positive definite solution of the Riccati

equation

dP

dt
= −PA−ATP + PBR−1BTP −Q(6)

P (T ) = M(7)

and (V (t), t ∈ [0, T ]) is the process that satisfies

V (t) = E[

∫ T

t

ΦP (s, t)P (s)CdW (s)|F(t)](8)

and ΦP is the fundamental solution of the matrix equation

dΦP (s, t)

dt
= −(AT − P (t)BR−1BT )ΦP (s, t)(9)

ΦP (s, s) = I.(10)

This result is proved in [9] and [11] by considering W as an affine term of the

equation (1), generalizing some methods for affine terms of deterministic linear control

systems, and using conditional expectation.

An important variation of the linear-quadratic Gaussian control problem is the

linear exponential quadratic Gaussian problem where the control system is the same
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as in (1) and W is a standard Brownian motion but the cost functional is changed to

the exponential of a quadratic functional, that is, J0 in (3) is replaced by

J0
e (U) = exp[

µ

2

∫ T

0

(< QX(t), X(t) > + < RU(t), U(t) >)dt(11)

+
µ

2
< MX(T ), X(T ) >]

Je(U) = E[J0
e (U)](12)

where µ > 0 is fixed and suitably bounded. This problem is an example of a risk

sensitive control problem (e.g. [12]) and in economic terms µ > 0 describes an investor

who is risk averse. This problem is well posed for µ ∈ (0, µ0) where µ0 is determined

from the solution region of a Riccati equation associated with this control problem.

The family of admissible controls, U , is

U = {U : U is an R
m-valued process that is progressively measurable with respect to

(F(t), t ∈ [0, T ]) such that U ∈ L2([0, T ]) a.s.}

While Jacobson [17] proved this result by explicitly solving the associated Hamil-

ton-Jacobi-Bellman equation, the proof outlined here is more direct and additionally

provides an explanation for the difference between the Riccati equation for this solu-

tion and the Riccati equation for the LQG solution. The following result provides an

optimal control. A sketch of the proof is also given and a complete proof is given in

[8].

Theorem 2.2. For the control problem given by (1) and (12) where W in (1) is

a standard Brownian motion, there is an optimal control (U∗(t), t ∈ [0, T ]) in U given

by

U∗(t) = −R−1BTP (t)X(t)(13)

where (P (t), t ∈ [0, T ]) is assumed to be the unique, symmetric, positive solution of

the following Riccati equation

−
dP

dt
= PA+ATP − P (BR−1BT − µCCT )P +Q(14)

P (T ) = M

and the optimal cost is

J(U∗) = G(0)exp[
µ

2
< P (0)X0, X0 >](15)

and (G(t), t ∈ [0, T ]) satisfies

−
dG

dt
=

µ

2
G tr(PCCT )(16)

G(T ) = 1.
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Proof. (Sketch). The cost functional Je is written as

Je(U) = Eexp[K(U)]

and K(U) can be expressed in the following form using the change of variables formula

for stochastic differential equations applied to < P (t)X(t), X(t) >, t ∈ [0, T ]) where

P is the solution of (14)

K(U)−
µ

2
< P (0)X0, X0 >(17)

=
µ

2
[

∫ T

0

(< RU,U > + < PBR−1BTPX,X > +2 < BTPX,U >)dt

+2

∫ T

0

< PX,CdW > −µ

∫ T

0

< PCCTPX,X > dt+

∫ T

0

tr(PCCT )dt]

=
µ

2

∫ T

0

|R− 1

2 [RU +BTPX ]|2dt

+µ

∫ T

0

< PX,CdW > −
µ2

2

∫ T

0

< PCCTPX,X > dt

+
µ

2

∫ T

0

tr(PCCT )dt.

The exponential of the two integrals that are the second and the third on the RHS

of the last equality in (17) is a Radon-Nikodym derivative so the optimal control is

obtained by minimizing the first term on the RHS of the last equality. This equality

shows a crucial difference between the quadratic cost functionals and the exponential

of the quadratic cost functionals and provides an explanation why the Riccati equation

has to be modified for the exponential of a quadratic cost functional as compared to

the quadratic cost functional. The optimal cost is obtained from the last term on the

RHS of (17).

3. Control of Brownian Motion in Some Manifolds. This direct method

that is demonstrated in Section 2 for solving control problems for linear systems and

is derived from the completion of squares method is not restricted to linear control

systems. The following examples of control of a Brownian motion in S2, a two-sphere,

and in H
2(R), a real hyperbolic plane, demonstrate the method’s applicability to

control problems for nonlinear systems.

The sphere S2 is diffeomorphic to the rank one symmetric space SO(3)/SO(2)

and is a simply connected compact Riemannian manifold of constant positive sectional

curvature (e.g. [15]). A Riemannian metric for S2 is obtained by restricting the

standard metric in R
3. The maximal distance between any two points in S2 using

this metric is L where

L = π.(18)
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L is called the diameter of S2. Choose an origin o ∈ S2. The antipodal point of o is

the submanifold Ao that is the distance L from o. Let ToS
2 be the tangent space to

S2 at o. The exponential mapping expo : ToS
2 → S2 is a diffeomorphism of the open

ball BL(o) = {x ∈ ToS
2 : |x| < L} onto the open set S2 \Ao. This diffeomorphism is

explicitly given by the geodesic polar coordinates for S2 at the origin as the map

expoY → (r, θ)(19)

where Y ∈ BL(o), r = |Y | and θ is the local coordinate of the unit vector Y/|Y |. In

these coordinates the Laplace-Beltrami operator ∆S2 (e.g. p.169 [15]) is

∆S2 =
∂2

∂r2
+ cot(

r

2
)
∂

∂r
+∆Sr

(20)

where r ∈ (0, L) and ∆Sr
is the Laplace-Beltrami operator on the sphere of radius r

from the origin. The sum of the first two terms on the right hand side of (20) is called

the radial part of the Laplace-Beltrami operator. For the control problem here it is

not necessary to describe ∆Sr
. The controlled stochastic system is described by the

following equation which describes the distance of the controlled Brownian motion

from o.

dX(t) =
1

2
cot(

X(t)

2
)dt+ U(t)dt+ dB(t)(21)

X(0) = X0(22)

where X(t) is the radial distance, (B(t), t ∈ [0, T ]) is a real-valued standard Brownian

motion for a fixed T > 0, and X0 ∈ (0, L) is a constant. The Brownian motion

is defined on the complete probability space (Ω,F ,P) and (F(t), t ∈ [0, T ]) is the

filtration for the Brownian motion B. If U(t) is a smooth function of X(t) then

(X(t), t ∈ [0, T ]) is a Markov process with the infinitesimal generator

1

2

∂2

∂r2
+

1

2
cot(

r

2
)
∂

∂r
+ U(r)

∂

∂r
.(23)

The cost functional for the control problem is denoted JS(U) that is described as

follows

J0
S(U) =

∫ T

0

(a sin2X(t)

4
+ U2(t)cos2

X(t)

4
)dt(24)

JS(U) = EJ0
S(U)(25)

where a > 0 is a constant. The cost functional only depends on the radial distance

from the origin o, so the control only appears in the radial component of the process.

Note that sin2 x
4 is an increasing function for x ∈ (0, π). The family of admissible

controls, U , is
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U = {U |U : [0, T ]× Ω → R is jointly measurable, (U(t), t ∈ [0, T ])

is progressively measurable with respect to (F(t), t ∈ [0, T ]) and∫ T

0 |U(t)|2dt < ∞ a.s. }

This family of controls is a natural family of processes in the equation (21) to en-

sure that the solution of the stochastic equation is well defined. The following Riccati

and linear equations are used in the solution of the control problem.

dg(t)

dt
=

3

8
g +

1

16
g2 − a(26)

g(T ) = 0(27)

dh(t)

dt
= −

3

16
g(28)

h(T ) = 0.(29)

The following result describes an optimal control for the stochastic system (21) and

the cost functional (25) [10].

Theorem 3.1. The stochastic control problem described by (21) and (25) has an

optimal admissible control, U∗, that is given by

U∗(t) = −
1

4
g(t)tan

X(t)

4
(30)

where t ∈ [0, T ] and g satisfies (26). The optimal cost is

J(U∗) = g(0)sin2X(0)

4
+ h(0)(31)

where h satisfies (28).

The optimal control is obtained by applying the change of variables formula for

stochastic differentials to (Z(t), t ∈ [0, T ]) where f(t, x) = g(t)sin2 x
4 +h(t) and Z(t) =

f(t,X(t)) ([10]).

A noncompact space is now considered for a stochastic control problem. A real

hyperbolic two space, H
2(R), is a noncompact symmetric space of rank one that

can be expressed as a quotient of semisimple Lie groups as G/K = SL(2,R)/SO(2).

While various geometric models exist for H2(R), the unit disk model, B1(0) = {y =

(y1, y2) ∈ R
2 : |y| < 1} where | · | is the usual Riemannian metric in R

2 is particularly

convenient here. The unit disk is given the Riemannian structure

ds2 = 4(1− |y|2)−2(dy21 + dy22).(32)

The radial part, R(·), of the Laplace-Beltrami operator or equivalently the

Laplace-Beltrami operator acting on SO(2)-invariant functions is given by

R(∆G/K) =
∂2

∂r2
+ coth

r

2

∂

∂r
.(33)



8 TYRONE E. DUNCAN AND BOZENNA PASIK-DUNCAN

The controlled stochastic system for the distance from the origin o is

dX(t) =
1

2
coth

X(t)

2
dt+ U(t)dt+ dB(t)(34)

X(0) = X0.(35)

The Brownian motion is defined on the complete probability space (Ω,F ,P) and

(F(t), t ∈ [0, T ]) is the filtration for the Brownian motion B. If U ≡ 0 then the Markov

process X has infinitesimal generator R(∆G/K), the radial part of the Laplacian on

H
2(R). The cost functional JH(U) is described as follows

J0
H(U) =

∫ T

0

(a sinh2X(t)

4
+ U2(t)cosh2X(t)

4
)dt(36)

JH(U) = EJ0
H(U)(37)

where a > 0 is fixed. The family of admissible controls, U , is

U = {U |U : [0, T ]× Ω → R is jointly measurable, (U(t), t ∈ [0, T ])

is progressively measurable with respect to (F(t), t ∈ [0, T ]) and∫ T

0 |U(t)|2dt < ∞ a.s. }

The following Riccati equation and linear equation are used to determine an opti-

mal control.

dg

dt
= −

3

8
g +

1

16
g2 − a(38)

g(T ) = 0(39)

dh

dt
= −

3

16
g(40)

h(T ) = 0.(41)

The following theorem describes an optimal control for the stochastic system (34) and

the cost functional (37).

Theorem 3.2. The stochastic control problem described by (34) and (37) has an

optimal admissible control, U∗, that is given by

U∗(t) = −
1

4
g(t)tanh

X(t)

4
(42)

where g satisfies (38). The optimal cost is

JH(U∗) = g(0)sinh2X(0)

4
+ h(0)(43)

where h satisfies (40).
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Proof. The following two well known hyperbolic sine and cosine identities are

used below.

sinh2 r

2
=

1

2
(coshr − 1)(44)

1

2
sinhr = sinh

r

2
cosh

r

2
.(45)

Let f(t, x) = g(t)sinh2 x
4+h(t) and Y (t) = f(t,X(t)). Apply the stochastic differential

rule (change of variables) to the process (Y (t), t ∈ [0, T ]) and integrate this differential

on [0, T ] to obtain

Y (T )− Y (0) =

∫ T

0

(
g

2
sinh

X

4
cosh

X

4
(
1

2
coth

X

2
dt(46)

+Udt+ dB(t)) +
g

16
cosh

X

2
dt−

3

16
gdt

+[−
3g

8
+

1

16
g2 − a]sinh2X

4
dt)

=

∫ T

0

(
g

8
cosh

X

2
dt+

g

2
Usinh

X

4
cosh

X

4
dt

+
g

4
sinh

X

2
dB(t) +

g

16
cosh

X

2
dt−

3

16
gdt

−
3g

8

1

2
(cosh

X

2
− 1)dt+ (

g2

16
− a)sinh2X

4
dt)

=

∫ T

0

(
g

2
Usinh

X

4
cosh

X

4
dt+

g

4
sinh

X

2
dB(t)

+(
g2

16
− a)sinh2X

4
dt).

Using (36) the following equality is satisfied.

J0
H(U) − g(0)sinh2X(0)

4
− h(0)(47)

=

∫ T

0

(U2cosh2X

4
dt+

g

2
U sinh

X

4
cosh

X

4
dt

+
g2

16
sinh2X

4
dt+

g

4
sinh

X

2
dB(t))

=

∫ T

0

(cosh2X

4
(U2 +

g

2
U tanh

X

4
+

g2

16
tanh2X

4
)dt

+
g

4
sinh

X

2
dB(t))

=

∫ T

0

(cosh2X

4
(U +

g

4
tanh

X

4
)2dt+

g

4
sinh

X

2
dB(t)).

It can be shown e.g. [7] that

E

∫ T

0

g2sinh2X

2
dt < ∞.(48)
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Taking the expectation of (47) it is clear that an optimal control is

U∗(t) = −
1

4
g(t)tanh

X(t)

4
.(49)

The optimal cost is

JH(U∗) = g(0)sinh2X(0)

4
+ h(0).(50)

It should be noted the similarity or more precisely the duality between the optimal

controls and the optimal costs in the last two theorems for stochastic systems in S2

and H
2(R) respectively. This duality is a generalization of the duality from Lie

theory between the compact symmetric space S2 and the noncompact symmetric

space H
2(R).

As a final example of this direct approach, an infinite time horizon discounted

control problem for this same control system in H
2(R), (34), is solved. Let ρ > 0 be

fixed. The cost functional, Jρ, is

J0
ρ (U) =

∫ ∞

0

e−ρt(a sinh2X(t)

4
+ U2(t)cosh2X(t)

4
)dt(51)

Jρ(U) = EJ0
ρ (U).(52)

The family of admissible controls, Uρ, is

Uρ = {U |U : [0,∞)× Ω → R is jointly measurable, (U(t), t ∈ [0,∞))

is progressively measurable with respect to (F(t), t ∈ [0,∞)) and∫ T

0
|U(t)|21[0,T ]dt < ∞ a.s. for each T > 0.}

The following algebraic Riccati equation and linear differential equation are used

in the determination of the optimal control. The positive root of the Riccati equation

is chosen.

1

16
g2 − g(−ρ+

3

8
)− a = 0(53)

dh

dt
= −

3

16
ge−ρt(54)

h(0) = 0.(55)

The following theorem solves the stochastic control problem by providing explicitly

an optimal control and the optimal cost.

Theorem 3.3. The stochastic control problem, described by (34) and (52), has

an optimal admissible control, U∗
ρ , that is given by

U∗
ρ = −

g

4
tanh

X(t)

4
(56)
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where g is the positive root of (53). The optimal cost is

Jρ(U
∗
ρ ) = gsinh2X(0)

4
− h(∞).(57)

Proof. Let ρ > 0 be given in the cost functional, (52), and let

f(t, x) = ge−ρtsinh2x

4
+ h(t)

where h satisfies (54). Let Y (t) = f(t,X(t)) where X satisfies (34) and apply the

change of variables formula to (Y (t), t ∈ [0, T ]) for a T > 0 fixed.

Y (T )− Y (0) =

∫ T

0

g

2
e−ρtsinh

X

4
cosh

X

4
(
1

2
coth

X

2
dt+ Udt+ dB)(58)

+
g

16
e−ρtcosh

X

2
dt− ρge−ρtsinh2X

4
dt−

3

16
ge−ρtdt

=

∫ T

0

(
g

8
e−ρtcosh

X

2
dt+

g

2
e−ρtUsinh

X

4
cosh

X

4
dt

+
g

4
e−ρtsinh

X

2
dB +

g

16
e−ρtcosh

X

2
dt

−ρge−ρtsinh2X

4
dt−

3

16
ge−ρtdt)

=

∫ T

0

(
g

8
e−ρt(2sinh2X

4
+ 1)dt+

g

2
e−ρtUsinh

X

4
cosh

X

4
dt

+
g

4
e−ρtsinh

X

2
dB +

g

16
e−ρt(2sinh2X

4
+ 1)dt

−ρge−ρtsinh2X

4
dt−

3

16
ge−ρtdt).

Using the equation for g and the definition of the cost functional, (52), the following

equality can be verified.

∫ T

0

e−ρt(a sinh2X(t)

4
+ U2(t)cosh2X(t)

4
)dt(59)

+ge−ρT sinh2X(T )

4
− gsinh2X(0)

4
+ h(T )

=

∫ T

0

(U2e−ρtcosh2X

4
+

g

2
e−ρtUsinh

X

4
cosh

X

4

+
1

16
g2e−ρtsinh2X

4
)dt+

g

4
e−ρtsinh

X

2
dB

=

∫ T

0

(e−ρtcosh2X

4
(U2 +

g

2
Utanh

X

4

+
g2

16
tanh2X

4
)dt+

g

4
e−ρtsinh

X

4
dB)

=

∫ T

0

(e−ρtcosh2X

4
(U +

g

4
tanh

X

4
)2dt+

g

4
e−ρtsinh

X

2
dB).
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Letting U be the optimal control U∗
ρ , using an integrability property as in (48) and

letting T → ∞ by the Monotone Convergence Theorem it suffices to verify that

lim supT→∞Ee−ρT sinh2X(T )

4
= 0.(60)

This result follows by a using a comparison theorem for scalar stochastic differential

equations [16] where the optimal system equation is compared to

dY (t) =
1

2
coth

Y (t)

2
dt−

αg

2
dt+ dB(t)(61)

Y (t) = X(0)(62)

for an α < 1 that can be chosen arbitrarily close to 1 and fixed. Thus the optimal

control is U∗
ρ .

The optimal cost can be easily computed from the determination of U∗
ρ .

The method described in this paper provides an alternative to either the Hamil-

ton-Jacobi-Bellman equation method or the stochastic maximum principle method.

The method given here exhibits an optimal control and the optimal cost directly in

the problem solution.
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